99 research outputs found

    The impacts of timing constraints on virtual channels multiplexing in interconnect networks

    Get PDF
    Interconnect networks employing wormhole-switching play a critical role in shared memory multiprocessor systems-on-chip (MPSoC) designs, multicomputer systems and system area networks. Virtual channels greatly improve the performance of wormhole-switched networks because they reduce blocking by acting as "bypass" lanes for non-blocked messages. Capturing the effects of virtual channel multiplexing has always been a crucial issue for any analytical model proposed for wormhole-switched networks. Dally has developed a model to investigate the behaviour of this multiplexing which have been widely employed in the subsequent analytical models of most routing algorithms suggested in the literature. It is indispensable to modify Dally's model in order to evaluate the performance of channel multiplexing in more general networks where restrictions such as timing constraints of input arrivals and finite buffer size of queues are common. In this paper we consider timing constraints of input arrivals to investigate the virtual channel multiplexing problem inherent in most current networks. The analysis that we propose is completely general and therefore can be used with any interconnect networks employing virtual channels. The validity of the proposed equations has been verified through simulation experiments under different working conditions

    Radar HRRP Modeling using Dynamic System for Radar Target Recognition

    Get PDF
    High resolution range profile (HRRP) is being known as one of the most powerful tools for radar target recognition. The main problem with range profile for radar target recognition is its sensitivity to aspect angle. To overcome this problem, consecutive samples of HRRP were assumed to be identically independently distributed (IID) in small frames of aspect angles in most of the related works. Here, considering the physical circumstances of maneuver of an aerial target, we have proposed dynamic system which models the short dependency between consecutive samples of HRRP in segments of the whole HRRP sequence. Dynamic system (DS) is used to model the sequence of PCA (principal component analysis) coefficients extracted from the sequence of HRRPs. Considering this we have proposed a model called PCA+DS. We have also proposed a segmentation algorithm which segments the HRRP sequence reliably. Akaike information criterion (AIC) used to evaluate the quality of data modeling showed that our PCA+DS model outperforms factor analysis (FA) model. In addition, target recognition results using simulated data showed that our method based on PCA+DS achieves better recognition rates compared to the method based on FA

    The effect of 12 weeks Anethum graveolens (dill) on metabolic markers in patients with metabolic syndrome; A randomized double blind controlled trial

    Get PDF
    Background: The clustering of metabolic abnormalities defined as metabolic syndrome is now both a public health and a clinical problem .While interest in herbal medicine has greatly increased, lack of human evidence to support efficacies shown in animals does exist. This clinical trial study designed to investigate whether herbal medicine, Anethum graveolens (dill) extract, could improve metabolic components in patients with metabolic syndrome. Methods: A double-blind, randomized, placebo-controlled trial using a parallel design was conducted. 24 subjects who had metabolic syndrome diagnostic criteria (update of ATP III) were randomly assigned to either dill extract (n = 12) or placebo (n = 12) for 3 months. Results: Across lipid component of metabolic syndrome, no significant differences in triglyceride (TG) concentration and high density lipoprotein cholesterol were seen between the two groups. However TG improved significantly from baseline (257.0 vs. 201.5p = 0.01) with dill treatment but such a significant effect was not observed in placebo group. Moreover, no significant differences in waist circumference, blood pressure and fasting blood sugar were seen between two groups after 3 months follow up period. Conclusion: In this small clinical trial in patients with metabolic syndrome, 12 weeks of dill extract treatment had a beneficial effect in terms of reducing TG from baseline. However dill treatment was not associated with a significant improvement in metabolic syndrome related markers compared to control group. Larger studies might be required to prove the efficacy and safety of long-Term administration of dill to resolve metabolic syndrome components. © 2012 Mansouri et al.; licensee BioMed Central Ltd

    Causal impact analysis for app releases in google play

    Get PDF
    App developers would like to understand the impact of their own and their competitors' software releases. To address this we introduce Causal Impact Release Analysis for app stores, and our tool, CIRA, that implements this analysis. We mined 38,858 popular Google Play apps, over a period of 12 months. For these apps, we identified 26,339 releases for which there was adequate prior and posterior time series data to facilitate causal impact analysis. We found that 33% of these releases caused a statistically significant change in user ratings. We use our approach to reveal important characteristics that distinguish causal significance in Google Play. To explore the actionability of causal impact analysis, we elicited the opinions of app developers: 56 companies responded, 78% concurred with the causal assessment, of which 33% claimed that their company would consider changing its app release strategy as a result of our findings

    Spontaneous Regeneration of the Mandible after Hemimandibulectomy: Report of a Case

    Get PDF
    Mandibular defects may result from many conditions such as trauma, inflammatory diseases and tumors. There are rare cases reported in the literature that have demonstrated spontaneous bone regeneration after resection of the mandible. Several factors such as age, preservation of the periosteum and genetics seem to influence spontaneous bone regeneration capacity in individuals. Evaluation of these factors may lead to a better understanding of the mechanism of spontaneous bone regeneration and also help to create new methods for bone reconstruction. The purpose of this article was to describe the spontaneous regeneration of the hemi-mandible with a well shaped condyle and coronoid after resecting a mandibular pathologic lesion in a young man

    Finding Collisions in a Quantum World: Quantum Black-Box Separation of Collision-Resistance and One-Wayness

    Get PDF
    Since the celebrated work of Impagliazzo and Rudich (STOC 1989), a number of black-box impossibility results have been established. However, these works only ruled out classical black-box reductions among cryptographic primitives. Therefore it may be possible to overcome these impossibility results by using quantum reductions. To exclude such a possibility, we have to extend these impossibility results to the quantum setting. In this paper, we study black-box impossibility in the quantum setting. We first formalize a quantum counterpart of fully-black-box reduction following the formalization by Reingold, Trevisan and Vadhan (TCC 2004). Then we prove that there is no quantum fully-black-box reduction from collision-resistant hash functions to one-way permutations (or even trapdoor permutations). We take both of classical and quantum implementations of primitives into account. This is an extension to the quantum setting of the work of Simon (Eurocrypt 1998) who showed a similar result in the classical setting

    Quantum Random Oracle Model with Auxiliary Input

    Get PDF
    The random oracle model (ROM) is an idealized model where hash functions are modeled as random functions that are only accessible as oracles. Although the ROM has been used for proving many cryptographic schemes, it has (at least) two problems. First, the ROM does not capture quantum adversaries. Second, it does not capture non-uniform adversaries that perform preprocessings. To deal with these problems, Boneh et al. (Asiacrypt\u2711) proposed using the quantum ROM (QROM) to argue post-quantum security, and Unruh (CRYPTO\u2707) proposed the ROM with auxiliary input (ROM-AI) to argue security against preprocessing attacks. However, to the best of our knowledge, no work has dealt with the above two problems simultaneously. In this paper, we consider a model that we call the QROM with (classical) auxiliary input (QROM-AI) that deals with the above two problems simultaneously and study security of cryptographic primitives in the model. That is, we give security bounds for one-way functions, pseudorandom generators, (post-quantum) pseudorandom functions, and (post-quantum) message authentication codes in the QROM-AI. We also study security bounds in the presence of quantum auxiliary inputs. In other words, we show a security bound for one-wayness of random permutations (instead of random functions) in the presence of quantum auxiliary inputs. This resolves an open problem posed by Nayebi et al. (QIC\u2715). In a context of complexity theory, this implies NPcoNP⊈BQP/qpoly \mathsf{NP}\cap \mathsf{coNP} \not\subseteq \mathsf{BQP/qpoly} relative to a random permutation oracle, which also answers an open problem posed by Aaronson (ToC\u2705)
    corecore